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LElTER TO THE EDITOR 

Heisenberg-Weyl algebras of symmetric and antisymmetric 

R Le Blanc? and D J RoweS 
t A W Wright Nuclear Structure Laboratory, Yale University, New Haven, Connecticut 
06511, USA 
$ Physics Department, University of Toronto, Toronto, Ontario, Canada MSS 1A7 

Received 17 March 1987 

Abstract. All the polynomials in symmetric ({2}) and antisymmetric ({l l})  u(n) bosons 
are constructed in u(n) bases and u(n)-reduced matrix elements for the bosons between 
polynomial basis states are computed. Applications to representation theory of Lie groups, 
paired-fermion and boson physics are briefly discussed. 

The nth Heisenberg-Weyl algebra hw( n) is characterised by the commutation relations 

[VI, z,l= 6 ,  i , j = l , . .  . , n  

where, in the Bargmann representation, z, is realised as a complex variable and 
V I  = a/az,. This algebra is widely used in physics and mathematics. In field theory, 
for example, the raising (z,) and lowering ( V I )  operators are interpreted as creation 
and annihilation operators of n-component vector bosons. They are also interpreted 
as the quanta (phonons) of many-body and lattice vibrations. Thus, one often needs 
to classify many-boson states and determine the matrix elements of the boson operators 
between such states. 

This is simple for the vector boson because the boson raising operators span the 
fundamental (1) irrep of a u(n) algebra. Consequently, the N-boson states span the 
fully symmetric irrep { N )  of U(  n )  and one has the well known u( n)-reduced matrix 
elements 

( { N  + l}llZll{N}) = ( N  + l)”*. 

In this letter, we consider tensor bosons, which carry irreps (2) and (11) of u(n),  
respectively. The components of the corresponding tensor bosons are now conveniently 
labelled by double indices (z,,; 1 G i, j 6 n) where zlJ = zJI for (2) and z0 = -zJl for (1 l}, 
For brevity, we therefore refer to them as symmetric and antisymmetric bosons, 
respectively. They are the raising operators of h w ( n ( n  + 1)/2) and h w ( n ( n  - 1)/2) 
Heisenberg- Weyl algebras, respectively, and the N-boson states carry fully symmetric 
irreps { N }  of U( n( n + 1)/2) and u( n( n - 1)/2), respectively. However, we wish to 
classify them by means of the generally much smaller u(n)  Lie algebra. 

Tensor bosons arise in physics as composites of more elementary objects, e.g. quark 
or Cooper (fermion) pairs. An understanding of their algebraic properties is therefore 
needed in the application of boson models in physics. They also appear in the 
contraction of classical Lie algebras. Thus, whereas the U(  n + 1) algebra contains 
raising operators (in addition to those of its u(n) subalgebra) which contract to the 
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components of a vector boson, the sp(n) and s o ( 2 n )  algebras contain raising operators 
which contract to (2)- and { 11)-tensor bosons, respectively. The determination of 
explicit formulae for boson matrix elements is therefore of major importance in 
representation theory. In addition, the corresponding D and B series feature in the 
study of branching rules and Kronecker products both for compact (King 1975, Black 
et al 1983) and non-compact (Rowe et a1 1985b) groups. 

Recent developments in vector coherent state theory (Rowe 1984, Deenen and 
Quesne 1984, Rowe er a1 1985a) have emphasised the importance of these contractions 
in the representation theory of the classical Lie algebras. In particular, it has been 
demonstrated that, starting from irreps of u(n),  one can induce irreps of classical Lie 
algebras and infer their explicit matrix representations in terms of u(n)  Wigner and 
Racah coefficients and the matrix elements of { 1)-, (2)- and { 11)-tensor bosons. This 
construction has been given explicitly by Hecht et a1 (1987) for su(n + 1) 3 u(n),  by 
Rowe (1984) and Rowe et a1 (1985a) for sp(2n, 8) 3 u ( n )  and by Hecht and Elliott 
(1985) for sp(4) 3 u(2). It has been given by Hecht (1985) for so(8) 3 u(4), Le Blanc 
and Rowe (1986) for so*(2n) 2 U (  n )  and so( n, 2) 3 so(n)  and by Rowe and Carvalho 
(1986) for so(2n) 3 U(  n). 

All of these results need matrix elements of the above-mentioned rank one and 
two tensor bosons, some of which are already known. (The simple n = 2 symmetric 
case has been reviewed by Le Blanc and Rowe (1986). The n = 3 symmetric case has 
been studied by Quesne (1981) and Rosensteel and Rowe (1983) and is applicable to 
the symplectic model of nuclear collective motions of Rosensteel and Rowe (1980) 
and to the interacting boson approximation of Arima and Iachello (1983). The n = 3 
antisymmetric case has been given by Hecht (1987).) The other necessary input for 
their use, namely a knowledge of the u (n )  Wigner-Racah calculus, has been developed 
by Biedenharn and Louck (see Louck 1970) and further developed and identified with 
the u(n) representation theory in the context of vector coherent state theory by Le 
Blanc and Hecht (1987). 

First we consider the symmetric case. The symmetric Bargmann variables 

obey the commutation relations 

where V, = (zij)t with respect to the Bargmann measure. 
The set of operators 

with summation over repeated indices, generates a U(  n )  Lie algebra obeying the usual 
commutation relations 

One verifies that the set ( z ~ )  spans the u(n)  symmetrical irrep ( 2 ) .  
It is known (Thrall 1942) that the set of all polynomials in the ( z ~ )  reduces under 

u(n) to a direct sum of all tensor irreps labelled by partitions { d }  = { d , ,  d2 , . . . , d n }  
in n parts belonging to D, the set of partitions of even integer parts. 
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We now show that the polynomial corresponding to the highest weight component 
of the irreducible tensor representation { d }  is given by 

where N ( { d } )  is the normalisation factor given by 

That the expression (Sa) is highest weight is easily verified by the vanishing action 
of the raising operators E,, i < j ,  on it. The factor N ( { d } )  is easily calculated using a 
generalisation of the Cappelli operator identity to the case of the symmetric bosons 
(Weyl 1946) which states that, for n = k, 

and which, for n = k = 1, reduces to 

V l l Z l I  = Z,lVIl+2. 

E l k  I E , , + k + l  El2 . . .  
E2 1 E2,+k . . .  

It is understood that in the expansion of the determinant on the right-hand side of (6) 
the products of generators are ordered by increasing column index. 

Defining the unnormalised (round) ket 

we have that 

=({dl-2,d2-2,  . . . ,  dn-2)hwl 
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which, using the Capelli identity and since the ket is of highest weight, reduces to 

({di, d2,. . , d,}hwl{di 9 d29 * 9 9 dnlhw) 

= ({dl -2, d2 -2, . . . , d, -2}hwl[( Ell + n + l)(E,,+ n) . . . 
x(Enn+2)]1{d,-2,d2-2, ..., d,-2}hw) 

= [ ( dl + n - 1 )( d2 + TI - 2) . . . (d, )] 

~ ( { d l - 2 , d 2 - 2 ,  . . . ,  dn-2}hwl{dl-2,d;-2 , . . . ,  d,-2}hw). (7b) 

An iteration of the above steps until d,, d,-l - d,, etc, vanish verifies (5b). 
We now compute u(n)-reduced matrix elements of the elementary (2) tensor 

operator (1) between states belonging to the tensor representations {d} and 
{d +2A(')(k)}, where A(')(k) is the n vector (00 . .  .OlO. .  . 0) with null entries 
everywhere except for the numeral 1 in its kth entry. 

Using the Cappelli identity, one determines the matrix element 

with no sum on k. The Wigner coefficient needed IO isolate the reduced matrix element 
from the matrix element (8) is obtained following the pattern calculus of Biedenharn 
and Louck (1968) and is given by 

dk - d, + j - k + 2  

Dividing the right-hand side of (8) by (9), we find 

)] l',. dk - d, + j  - k +  1 
({d +2A'"( k)}llzll{d}) = i(dk + n + 2  - k)  n 

J f k  

(9) 

Since the set of all the irreducible tensorial representations {d} in the symmetric 
bosons with d l + d 2 + .  . .+d ,  = 2d, fixed spans the one-rowed unirrep {ds} of the 
u(n(n + 1)/2) Lie algebra spanned by the generators = zabVcd, the reduced matrix 
elements (10) must satisfy the sum rule 

dk - d, + j - k - 1 = [ i (dk+n-k )  fi ( 
k = l  , = I  dk-d,+j-k 

/ * k  

n 

=i  1 dj. 
j =  1 

The sum in (1 1 a )  is a sum over the residues of the complex function 
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a sum which is equal to minus the residue of this same function at  infinity. The latter 
residue is defined by the residue of the function 

at zero which is found to be given by minus the sum in equation (1  1 b ) ,  thus verifying 
equation (10). 

Next we consider the antisymmetric case. The antisymmetric Bargmann variables 

ZIJ = -zJI l s i , j s n  (14) 

obey the commutation relations 

L V y ,  Z k l l  = 8 i k 8 j I  - 8 i I 8 j k  (15)  

where V,] = -V,, = (z,,)' with respect to the Bargmann measure. 
The set of operators 

Er] = - z z , a V a j  (16) 

also generates a U( n )  Lie algebra obeying the commutations relations (4). The set (z,,) 
now spans an  antisymmetrical u (n )  irrep (11). 

The set of all polynomials in ( z v )  now reduces under U(  n )  to a direct sum of all 
tensor irreps labelled by partitions { b }  E B, the set of partitions conjugate to the set D 
of partitions of even integer parts (King 1975, Black et al 1983). A generic partition 
{ b )  E B will thus be labelled by { b, , b2,  . . . , 6,) with 

b, = b2 2 b3 = b 4 z .  . . 2 bzm-,  = bzm for n = 2m, b z m f l  = 0 for n = 2m + 1 .  (17) 

We now show that the polynomial corresponding to the highest weight component 
of the irreducible tensor representation { b}  is given by 

b2,,,-1 E n I s r 2 n 3 n  4...rr2",_ 1 n 2 , n Z " l i i 2 Z r r ) r r q ' .  . Z n 2  ),,_I T2,,> 

m!2" n s 2 m  

where the normalisation factor N ( { b } )  is given by 

rIy<J[(b2,-l - b2/-,  +2j - 2 i ) ( b z l - ,  - bzl-, +2j -2i - 1) 
r I~=,(b2 , - ,+2m - 2 i ) !  

and where E , ~ ~ ~ . . . ~ , ,  is the totally antisymmetric tensor in n dimensions with E ~ ~ . . . ,  = +l.  
That the expression (18a) is of highest weight is easily seen from the (antisymmetric) 
tensorial properties of the elementary polynomials 

7 r s 2 a  

mi "2 7r3 T r . . .  rr2u - I "2" z ?TI TQZ "3 T 4  * . z T Z U  ~ I">" ( a !2" 

from which it is built. 
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Although no equivalent to the Cappelli identity is known for the antisymmetric 
boson case, it can be inferred that the weaker identity 

b3 - b, 

m!2" 

holds, from which one easily derives the normalisation coefficient N({ b} ) .  
We now compute the u( n)-reduced matrix elements of the elementary { 1 1 )  tensor 

operator (14) between states belonging to the tensor representations { b }  and 
{ b + A'")( k ) }  where A(")( k )  is the n vector (00 . . . 01 10. . . 0 )  with null entries 
everywhere except for the numeral 1 in its (2k  - 1)th and (2k)th entries. 

Using (19) and the identity 

The Wigner coefficient needed to isolate the reduced matrix element from ( 2 1 )  is 
obtained once more through the use of the pattern calculus and is given by 

)] k-1 b2,-, - b2j-1 + 2 j  -2k+ 1 ) kfi l  ( b, k - - b,- + 2j - 2 k + 2 
(bzk-1- b2j-1 + 2j - 2k - 1 j = l  62,-1- b2j-I + 2j - 2k 

Dividing the right-hand side of (21) by ( 2 2 ) ,  we find 

( { b  + A ( l w } l l  z ll{b}) 

)] (23) 
=[(b2 , ,+2m-2k+l)  b2k- l -  bZj- ,+2j-2k-1 

b2k-I - b2j-1 + 2j -2k + 1 
j t  k 
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Since the set of all the irreducible tensorial representations { b }  in the antisymmetric 
bosons with bl + b , + .  . .+ b2m-r = b, fixed spans the one-rowed unirrep {b,} of the 
u(n(n - 1)/2) Lie algebra generated by = zabVcd, the reduced matrix elements 
( 2 3 )  must satisfy the sum rule 

2 ({b}llzll{b - A Y k ) b 2  
k = l  

m 

= b2j-1. (24b) 

The sum in (24a) is a sum over the residues of the complex function 

a sum which is equal to minus the residue of this same function at infinity. One easily 
finds the latter residue to be given by minus the sum in equation (24b) thus verifying 
equation ( 2 3 ) .  
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